Java-中最大的数据结构:LinkedHashMap-了解一下?
Map 家族数量众多,其中 HashMap 和 ConcurrentHashMap 用的最多,而 LinkedHashMap 似乎则是不怎么用的,但是他却有着顺序。两种,一种是添加顺序,一种是访问顺序。
详情
LinkedHashMap 继承了 HashMap。那么如果是你,你怎么实现这两个顺序呢?
如果实现添加顺序的话,我们可以在该类中,增加一个链表,每个节点对应 hash 表中的桶。这样,循环遍历的时候,就可以按照链表遍历了。只是会增大内存消耗。
如果实现访问顺序的话,同样也可以使用链表,但每次读取数据时,都需要更新一下链表,将最近一次读取的放到链尾。这样也就能够实现。此时也可以跟进这个特性实现 LRU(Least Recently Used) 缓存。
如何使用?
下面是个小 demo
1 | LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(16, 0.75f, true); |
首先构造方法是有意思的,比 HashMap 多了一个 accessOrder boolean 参数。表示,按照访问顺序来排序。最新访问的放在链表尾部。
如果是默认的,则是按照添加顺序,即 accessOrder 默认是 false。
源码实现
如果看 LinkedHashMap 内部源码,会发现,内部确实维护了一个链表:
1 | /** |
而这个 LinkedHashMap.Entry 内部也维护了双向链表必须的元素,before,after:
1 | /** |
在添加元素的时候,会追加到尾部。
1 | Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) { |
在 get 的时候,会根据 accessOrder 属性,修改链表顺序:
1 | public V get(Object key) { |
同时注意:这里修改了 modCount,即使是读操作,并发也是不安全的。
如何实现 LRU 缓存?
LRU 缓存:LRU(Least Recently Used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。
LinkedHashMap 并没有帮我我们实现具体,需要我们自己实现 。具体实现方法是 removeEldestEntry 方法。
一起来看看原理。
首先,HashMap 在 putVal 方法最后,会调用 afterNodeInsertion 方法,其实就是留给 LinkedHashMap 的。而 LinkedHashMap 的具体实现则是根据一些条件,判断是否需要删除 head 节点。
源码如下:
1 | void afterNodeInsertion(boolean evict) { // possibly remove eldest |
evict 参数表示是否需要删除某个元素
,而这个 if 判断需要满足的条件如上:head 不能是 null,调用 removeEldestEntry 方法,返回 true 的话,就删除这个 head。而这个方法默认是返回 false 的,等待着你来重写。
所以,removeEldestEntry 方法的实现通常是这样:
1 | public boolean removeEldestEntry(Map.Entry<K, V> eldest){ |
如果长度大于容量了,那么就需要清除不经常访问的缓存了。afterNodeInsertion 会调用 removeNode 方法,删除掉 head 节点 —— 如果 accessOrder 是 true 的话,这个节点就是最不经常访问的节点。
拾遗
LinkedHashMap 重写了一些 HashMap 的方法,例如 containsValue 方法,这个方法大家猜一猜,怎么重写比较合理?
HashMap 使用了双重循环,先循环外层的 hash 表,再循环内层的 entry 链表。性能可想而知。
但 LinkedHashMap 内部有个元素链表,直接遍历链表就行。相对而言而高很多。
1 | public boolean containsValue(Object value) { |
这也算一种空间换时间的策略吧。
get 方法当然也是要重写的。因为需要根据 accessOrder 更新链表。
总结
雪薇的总结的一下:
LinkedHashMap 内部包含一个双向链表维护顺序,支持两种顺序——添加顺序,访问顺序。
默认就是按照添加顺序来的,如果要改成访问顺序的话,构造方法中的 accessOrder 需要设置成 true。这样,每次调用 get 方法,就会将刚刚访问的元素更新到链表尾部。
关于 LRU,在accessOrder 为 true 的模式下,你可以重写 removeEldestEntry 方法,返回 size() > capacity
,这样,就可以删除最不常访问的元素。